## Chapter 4: Force and Motion Thursday January 29th

-Review: Newton's $2^{\text {nd }}$ law

- Free body diagrams and net force
- Normal/contact forces and weight
-Review: Newton's $3^{\text {nd }}$ law
-Tension force as an example of the $3^{\text {rd }}$ law
- Lots of example problems
- Introduction to friction (if time)

Reading: up to page 62 in the text book (Ch. 4)

## Newton's second law

Newton's definition: "The rate at which a body's momentum changes is equal to the net force acting on the body"

## The more familiar version:

$$
\vec{F}_{\mathrm{net}}=m \vec{a}
$$

Note that Newton's $2^{\text {nd }}$ law includes the $1^{\text {st }}$ law as a special case ( $F=0$ ).
-We may treat the components separately.

$$
F_{\mathrm{net}, x}=m a_{x}, \quad F_{\mathrm{net}, y}=m a_{y}, \quad F_{\mathrm{net}, z}=m a_{z}
$$

-The mass, $m$, is a scalar quantity.
$\cdot 1 \mathrm{~N}=(1 \mathrm{~kg})\left(1 \mathrm{~m} \cdot \mathrm{~s}^{-2}\right)=1 \mathrm{~kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-2}$

## Free-body diagrams




$$
\sum \vec{F}=0=\vec{a}
$$

The 'net' force equals zero
-The forces shown above are what we call "external forces."
-They act on the "system" $S$.

- S may represent a single object, or a system of rigidly connected objects. We do not include the internal forces which make the system rigid in our free body diagram.


## Gravitational Force

During free fall

$$
|\vec{a}|=g
$$

$$
\Rightarrow \quad F=m a=m g \quad \text { downward }
$$

- This is always true at the surface of the earth.
- Even when a mass is stationary, e.g., on the surface of a table, gravity still acts downwards with a magnitude equal to $m g$.
- This leads to the concepts of a weight (=mg) and normal force.


## Weight and Normal Force


-The internal forces within the table supply a normal force, which is directed normal to the surface of the table, i.e., up.
-If the body remains stationary, then the normal force must be equal in magnitude (opposite in direction) to the weight.
Weight (a force!):

$$
N=W=F_{g}=m g \text { Newtons }(\mathrm{N})
$$

## Newton's $3^{\text {rd }}$ law

If object $A$ exerts a force on object $B$, then object B exerts an oppositely directed force of equal magnitude on object $\boldsymbol{A}$.
For every "action" force, there is always an equal and opposite "reaction" force; we call these a "third-law force pair."

## Newton's $3^{\text {rd }}$ law



## Newton's 3rd law <br> 



## Tension



- A taut cord is said to be in a state of tension.
- If the body pulling on the cord does so with a force of 50 N , then the
 tension in the cord is 50 N .
- A taut cord pulls on objects at either end with equal and opposite force equal to the tension (Newton's $3^{\text {rd }}$ law).
- Cords are massless, pulleys are massless and frictionless


## Frictionless Horizontal Plane

What are the tensions, $T_{1}$ and $T_{2}$ ?
Acceleration, $a=3 \mathrm{~m} / \mathrm{s}^{2}$
$\longrightarrow$


We will deal with friction next week

## Frictionless Inclined Plane

1. What is the tension, $T$, if the mass is static?
2. What is the acceleration if the tension, $T=0$ ?


## Frictionless Inclined Plane

1. What is the acceleration if $m=5 \mathrm{~kg}$ ?
2. What is the acceleration if $m=6 \mathrm{~kg}$ ?
3. What is the acceleration if $m=4 \mathrm{~kg}$ ?

